Self-Assembly of Bidentate Ligands for Combinatorial Homogeneous Catalysis: Methanol-Stable Platforms Analogous to the AdenineThymine Base Pair

Jörg Wieland, Christoph Waloch, Bernhard Breit*
Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität Freiburg,
Albertstr. 21, 79104 Freiburg i. Br., Germany.
bernhard.breit@organik.chemie.uni-freiburg.de

 Selected interatomic distances $[\hat{A}]$ and angles $\left[{ }^{2}\right]$: a) cis-[Cl $\left.{ }_{2} \mathrm{Pt}(3 / 7)\right]$ Pt-P1 $2.2417(6)$, $\mathrm{Pt}-\mathrm{P} 22.2517(6)$, N1 $\cdots \mathrm{N} 32.910(3)$, N4 $\cdots \mathrm{N} 2$ 2.987(3), P1-Pt-P2 $99.01(2)$, N1-H $\cdots \mathrm{N} 3$ 129.0, N4-H $\cdots \mathrm{N} 2$ 153.7. b) cis$\left[\mathrm{Cl}_{2} \mathrm{Pt}(4 / 6)\right]: \mathrm{Pt}-\mathrm{P} 12.2609(5), \mathrm{Pt}-\mathrm{P} 22.2331(6), \mathrm{N} 1 \cdots \mathrm{~N} 22.992(3), \mathrm{N} 3 \cdots \mathrm{O} 13.038(3) ; \mathrm{P} 1-\mathrm{Pt}-\mathrm{P} 297.42(2)$, pink, Cl yellow; H atoms bound to C atoms are omitted for clarity.
In additonal hydroformylation experiments, using 1-octene as substrate, high finear:branched ratios (up to $>99: 1$, table 1, colorless background) could be achieved. The observed regioselectivies confirm that in all cases bidentate ligand catalysts are the kinetically competent species. While our "first generation" self-assembly ligand system was very susceptible to protic solvents, ${ }^{4}$ the new thiazole based ligand combinations $4 / 6$ and $5 / 6$ exhibit a much more stable hydrogen bonding framework. This allowed us for the first time to perform a hydroformylation in a protic solvent such as methanol (Table 1, grey background). Even under these conditions, stable heterodimeric catalysts based on hydrogen bonds are formed, giving very high l:b ratios (up to 97:3).

Table 1: fnear:branched (l:b) regioselectivities ${ }^{[a]}$ of the rhodium-catalyzed hydroformylation of 1 octene in toluene and methanol for self-assembled bidentate ligands derived from donor-acceptor $(L, 1-5)$ and acceptor-donor ligands (L $; 6,7$).

$L^{\mathrm{DA}} \rightarrow$ $\mathrm{L}^{\mathrm{AD}} \downarrow$								solvent	1	2	3	4	5
$\mathbf{6} \mathbf{6}$	toluene	$94: 6$	$96: 4$	$95: 5$	$98: 2$	$>99: 1$							
	MeOH	$82: 18$	$79: 21$	$79: 21$	$97: 3$	$96: 4$							
	toluene	$89: 11$	$96: 4$	$95: 5$	$95: 5$	$>99: 1$							
	MeOH	$77: 23$	$80: 20$	$78: 22$	$89: 11$	$85: 15$							

in all cases.
[b] Reaction conditions: $\left[\operatorname{Rh}(C O)_{2}(a c a c)\right],[R h]: L^{D A}: L^{A D}: 1$-octene $=1: 10: 10: 7500,10$ bar $C O / H_{2}(1: 1)$, solvent, c_{0} (1-octene) $=2.91 \mathrm{M}, 12 \mathrm{~h}$
Catalyst preformation: 5 bar $\mathrm{CO} / \mathrm{H}_{2}(1: 1), 30 \mathrm{~min}, \mathrm{RT} \rightarrow 80^{\circ} \mathrm{C}$

Conclusion

In conclusion, the combinatorial self-assembly of monodentate to bidentate ligands for homogeneous catalysis is a very promising approach to the development of new and better catalysts. Herein, we have demonstrated that variation of the heterocyclic self-assembly platform has an enormous impact on the properties of the resulting catalyst. New hydroformylation catalysts with excellent activities and outstanding regioselectivities, even in protic solvents such as methanol, were identified. This result is an important extension of the application scope of self-assembled catalysts based on hydrogen-bonding. New applications in homogeneous catalysis are expected to emerge soon.

Acknowledgments

This work was supported by the Fonds der Chemischen Industrie, the DFG BR1646/5-1 and International research training group GRK 1038: "Catalysts and catalytic reactions for organic ynthesis", the Alfried Krupp Award for young university teachers of the Krupp foundation (to BB) and BASF AG. We thank Dr. M. Keller for the X-ray crystal structure analysis and A. Lutterer and G Leonhardt-Lutterbeck for technical assistance.

